Bayes-Optimal Entropy Pursuit for Active Choice-Based Preference Learning
نویسندگان
چکیده
We analyze the problem of learning a single user’s preferences in an active learning setting, sequentially and adaptively querying the user over a finite time horizon. Learning is conducted via choice-based queries, where the user selects her preferred option among a small subset of offered alternatives. These queries have been shown to be a robust and efficient way to learn an individual’s preferences. We take a parametric approach and model the user’s preferences through a linear classifier, using a Bayesian prior to encode our current knowledge of this classifier. The rate at which we learn depends on the alternatives offered at every time epoch. Under certain noise assumptions, we show that the Bayes-optimal policy for maximally reducing entropy of the posterior distribution of this linear classifier is a greedy policy, and that this policy achieves a linear lower bound when alternatives can be constructed from the continuum. Further, we analyze a different metric called misclassification error, proving that the performance of the optimal policy that minimizes misclassification error is bounded below by a linear function of differential entropy. Lastly, we numerically compare the greedy entropy reduction policy with a knowledge gradient policy under a number of scenarios, examining their performance under both differential entropy and misclassification error.
منابع مشابه
Groundwater Potential Mapping using Index of Entropy and Naïve Bayes Models at Ardabil Plain
Although groundwater resources have long been selected as a safe choice for resolving human water requirements, overexploitation of them, especially at Ardabil plain, has promoted a decrease in the quality and quantity of these resources. One of the significant solutions is to identification of the groundwater potential zones and exploitation of them according to their potentials. The aim of th...
متن کاملMaximum Entropy Model Learning of Subcategorization Preference
Abstract This paper proposes a novel method for learning probabilistic models of subcategorization preference of verbs. Especially, we propose to consider the issues of case dependencie~ and noun class generalization in a uniform way. We adopt the maximum entropy model learn~,g method and apply it to the task of model learning of subcategorization preference. Case dependencies and noun class ge...
متن کاملCollaborative Gaussian Processes for Preference Learning
We present a new model based on Gaussian processes (GPs) for learning pairwise preferences expressed by multiple users. Inference is simplified by using a preference kernel for GPs which allows us to combine supervised GP learning of user preferences with unsupervised dimensionality reduction for multi-user systems. The model not only exploits collaborative information from the shared structure...
متن کاملActive Learning with Partially Labeled Data via Bias Reduction
With active learning the learner participates in the process of selecting instances so as to speed-up convergence to the “best” model. This paper presents a principled method of instance selection based on the recent bias variance decomposition work for a 0-1 loss function. We focus on bias reduction to reduce 0-1 loss by using an approximation to the optimal Bayes classifier to calculate the b...
متن کاملSemi-supervised Ranking Pursuit
We propose a novel sparse preference learning/ranking algorithm. Our algorithm approximates the true utility function by a weighted sum of basis functions using the squared loss on pairs of data points, and is a generalization of the kernel matching pursuit method. It can operate both in a supervised and a semi-supervised setting and allows efficient search for multiple, near-optimal solutions....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1702.07694 شماره
صفحات -
تاریخ انتشار 2017